skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Farooki, Hameedullah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a transformer model, named DeepHalo, to predict the occurrence of halo coronal mass ejections (CMEs). Our model takes as input an active region (AR) and a profile, where the profile contains a time series of data samples in the AR that are collected 24 hr before the beginning of a day, and predicts whether the AR would produce a halo CME during that day. Each data sample contains physical parameters, or features, derived from photospheric vector magnetic field data taken by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. We survey and match CME events in the Space Weather Database Of Notification, Knowledge, Information and the Large Angle and Spectrometric Coronagraph CME Catalog, and we compile a list of CMEs, including halo CMEs and nonhalo CMEs, associated with ARs in the period between 2010 November and 2023 August. We use the information gathered above to build the labels (positive vs. negative) of the data samples and profiles at hand, where the labels are needed for machine learning. Experimental results show that DeepHalo with a true skill statistic (TSS) score of 0.907 outperforms a closely related long short-term memory network with a TSS score of 0.821. To our knowledge, this is the first time that the transformer model has been used for halo CME prediction. 
    more » « less
    Free, publicly-accessible full text available February 25, 2026
  2. Abstract The application of machine learning to the study of coronal mass ejections (CMEs) and their impacts on Earth has seen significant growth recently. Understanding and forecasting CME geoeffectiveness are crucial for protecting infrastructure in space and ensuring the resilience of technological systems on Earth. Here we present GeoCME, a deep-learning framework designed to predict, deterministically or probabilistically, whether a CME event that arrives at Earth will cause a geomagnetic storm. A geomagnetic storm is defined as a disturbance of the Earth’s magnetosphere during which the minimum Dst index value is less than −50 nT. GeoCME is trained on observations from the instruments including LASCO C2, EIT, and MDI on board the Solar and Heliospheric Observatory (SOHO), focusing on a dataset that includes 136 halo/partial halo CMEs in Solar Cycle 23. Using ensemble and transfer learning techniques, GeoCME is capable of extracting features hidden in the SOHO observations and making predictions based on the learned features. Our experimental results demonstrate the good performance of GeoCME, achieving a Matthew’s correlation coefficient of 0.807 and a true skill statistics score of 0.714 when the tool is used as a deterministic prediction model. When the tool is used as a probabilistic forecasting model, it achieves a Brier score of 0.094 and a Brier skill score of 0.493. These results are promising, showing that the proposed GeoCME can help enhance our understanding of CME-triggered solar-terrestrial interactions. 
    more » « less
  3. Abstract Small-scale magnetic flux ropes (SMFRs) fill much of the solar wind, but their origin and evolution are debated. We apply our recently developed, improved Grad–Shafranov algorithm for the detection and reconstruction of SMFRs to data from Parker Solar Probe, Solar Orbiter, Wind, and Voyager 1 and 2 to detect events from 0.06 to 10 au. We observe that the axial flux density is the same for SMFRs of all sizes at a fixed heliocentric distance but decreases with distance owing to solar wind expansion. Additionally, using the difference in speed between SMFRs, we find that the vast majority of SMFRs will make contact with others at least once during the 100 hr transit to 1 au. Such contact would allow SMFRs to undergo magnetic reconnection, allowing for processes such as merging via the coalescence instability. Furthermore, we observe that the number of SMFRs with higher axial flux increases significantly with distance from the Sun. Axial flux is conserved under solar wind expansion, but the observation can be explained by a model in which SMFRs undergo turbulent evolution by stochastically merging to produce larger SMFRs. This is supported by the observed log-normal axial flux distribution. Lastly, we derive the global number of SMFRs above 1015Mx near the Sun to investigate whether SMFRs begin their journey as small-scale solar ejections or are continuously generated within the outer corona and solar wind. 
    more » « less
  4. Abstract Interplanetary magnetic flux ropes (MFRs) are commonly observed structures in the solar wind, categorized as magnetic clouds (MCs) and small-scale MFRs (SMFRs) depending on whether they are associated with coronal mass ejections. We apply machine learning to systematically compare SMFRs, MCs, and ambient solar wind plasma properties. We construct a data set of 3-minute averaged sequential data points of the solar wind’s instantaneous bulk fluid plasma properties using about 20 years of measurements from Wind. We label samples by the presence and type of MFRs containing them using a catalog based on Grad–Shafranov (GS) automated detection for SMFRs and NASA's catalog for MCs (with samples in neither labeled non-MFRs). We apply the random forest machine learning algorithm to find which categories can be more easily distinguished and by what features. MCs were distinguished from non-MFRs with an area under the receiver-operator curve (AUC) of 94% and SMFRs with an AUC of 89%, and had distinctive plasma properties. In contrast, while SMFRs were distinguished from non-MFRs with an AUC of 86%, this appears to rely solely on the 〈B〉 > 5 nT threshold applied by the GS catalog. The results indicate that SMFRs have virtually the same plasma properties as the ambient solar wind, unlike the distinct plasma regimes of MCs. We interpret our findings as additional evidence that most SMFRs at 1 au are generated within the solar wind. We also suggest that they should be considered a salient feature of the solar wind’s magnetic structure rather than transient events. 
    more » « less
  5. Abstract Small-scale interplanetary magnetic flux ropes (SMFRs) are similar to ICMEs in magnetic structure, but are smaller and do not exhibit coronal mass ejection plasma signatures. We present a computationally efficient and GPU-powered version of the single-spacecraft automated SMFR detection algorithm based on the Grad–Shafranov (GS) technique. Our algorithm can process higher resolution data, eliminates selection bias caused by a fixed 〈B〉 threshold, has improved detection criteria demonstrated to have better results on an MHD simulation, and recovers full 2.5D cross sections using GS reconstruction. We used it to detect 512,152 SMFRs from 27 yr (1996–2022) of 3 s cadence Wind measurements. Our novel findings are the following: (1) the SMFR filling factor (∼ 35%) is independent of solar activity, distance to the heliospheric current sheet, and solar wind plasma type, although the minority of SMFRs with diameters greater than ∼0.01 au have a strong solar activity dependence; (2) SMFR diameters follow a log-normal distribution that peaks below the resolved range (≳104km), although the filling factor is dominated by SMFRs between 105and 106km; (3) most SMFRs at 1 au have strong field-aligned flows like those from Parker Solar Probe measurements; (4) the radial density (generally ∼1 detected per 106km) and axial magnetic flux density of SMFRs are higher in faster solar wind types, suggesting that they are more compressed. Implications for the origin of SMFRs and switchbacks are briefly discussed. The new algorithm and SMFR dataset are made freely available. 
    more » « less